The Truth About Cadence Part 2

In the introduction to this series I wrote about how running coach Jack Daniels spent the 1984 LA Olympics measuring the cadence of runners, but what he didn’t measure was the cadence of elite sprinters. This may simply have been because, as a distance running coach, he wasn’t interested by sprinters; or it may be because sprinters are significantly quicker making counting harder.


Fortunately World Athletics produced a series of reports from the 2017 World Championships giving us the data for sprinters as well as distance runners. Through the use of digital technology the research is very accurate. Using cameras capable of capturing up to 250 frames per second, runners were recorded in the middle of the home straight and then again in the 10 metres before the finish line.

At this point, we need to recognise that sprinters don’t work in cadence (number of steps in a minute) probably because their races are over in seconds. They refer to frequency or Step Rate (Hz) – how many steps they take per second!  Still to try and make it meaningful for this article, I’ve calculated the equivalent cadence – multiplying by sixty and rounding off – to get a value for a minute.

100m

Table 1 below shows the step rate and calculated cadence for the men’s 100m with competitors ordered by their finish place. Justin Gatlin took gold in 9.92secs, Christian Coleman silver in 9.94s and Usain Bolt took bronze in 9.95s – just 0.03seconds separating them.

The cadences were sampled during the mid-section of the race when athletes are accelerating and their cadences will still be high. We can see, with the exception of Bolt, that the cadences range from 278 (Prescod) to 300 (Simbine and Su). These are typical elite men’s values.  Usain Bolt’s turnover is notably lower at 263 which is probably because he is tall (6’5” / 1.95m) and that makes it harder to recover the legs quickly. This obviously didn’t stop him having a successful career as his height gives him a longer stride.

Table 1 – Men’s 100m final data at around halfway

In any sprint the cadence is highest at the beginning where athletes take small, quick steps to accelerate. As the race goes on they begin to rely on stride length (which is why Bolt excels in the later stages of both the 100m and 200m) and the cadence drops partly due to spending longer in the air – ‘longer’ is measured in hundredths of a second though.

Table 2 details only the medallists in the final 10metres of the race we can see the Step Rate / Cadence has dropped albeit it is still notably high. In such a tight race we can be sure all three sprinters are giving their best effort and therefore these values are representative. There’s roughly a 10% drop-off from earlier in the race.

Table 2 – data for three medallists nearing the finish line

These sprint values are matched by women sprinters as you will see in table 3 below. Perhaps their values are a little lower overall but we can see from Baptiste and Ahouré that women are capable of the highest cadences. Just as the men use no one set cadence (or step frequency) throughout – it changes and adapts as the race goes on – the three female medallists do too.

Likewise, as Bolt showed how height affects cadence, we see Schippers at 5.9” (1.79m) has a slightly lower cadence than the others in the field at 275. Approaching the line there is a slight increase in her cadence, which is probably a negligible difference, and which probably reflects two World Championship golds won in the 200m and would have involved training speed endurance for a longer race.

Table 3 – Women’s 100m final at halfway plus medallists nearing the finish

400m

In running one lap of the track as fast as possible, a world class 400m runner completes the distance in around 45 seconds if they’re male, 50s if they’re female.  It is an event where anaerobic energy plays a large part in creating the speed but where the build-up of ‘lactic acid’ causes the legs to start seizing up – particularly in the home straight. (It’s not really lactic acid but that’s the conventional wisdom).

The data presented in table 4 from the men’s 2017 World Championship final is taken at 350m – so the legs will be starting to struggle. Again runners are listed in their finishing order.

Table 4 – Men’s 400m cadences in the home straight

And here in table 5 is the data for the women’s race.

Table 5 – Women’s 400m cadences in the home straight

With these values occurring in the home straight where the commentators say “the bear jumps on your back” due to the lactic build-up making the limbs feel heavy; we aren’t necessarily getting the entire picture of the cadences which 400m runners are capable of achieving.

Fortunately there is data available here detailing the cadences in the four quarters of the 2016 Rio Olympic final where Wayde van Niekerk set the world record running against two of his main rivals Kirani James and LaShawn Merrit; as well as the data from Michael Johnson’s previous world record run in 1999. While it appears these are manually counted by the blogger, the numbers are very close to those presented in the 2017 WC report for van Niekerk; a report which also contains data for Butch Reynolds who set the previous world record. This is all detailed in table 6.

Table 6 – comparison of elite 400m runners Step Rate and Cadence across whole race

What’s notable is the variance across the runners.  You go from Butch Reynolds who is consistently around 220 for the whole race up to Michael Johnson who is consistently around 250. In between the other runners all start off with a high cadence which is dropping off by the final 100m.


What we can say for sure is the longer sprint distance of 400m results in lower cadences than those in the 100m. Johnson has the highest cadence of anyone here at 259 in the first 100m and that’s below the 100m runners who, with the exception of Bolt, were in the 280-300 range.

This isn’t surprising as 400m runners tend to be taller than 100m runners, usually over 6’ / 1.85m taking long strides to cover the ground quickly which combines with a lower cadence.  It’s not always the case – Michael Johnson has the highest cadence yet is slightly taller than van Niekerk.  They may also have lower cadences or shorter strides because they are running slower – the male 400m runners are averaging just under 11 seconds per 100m.

I’ve deliberately not included stride lengths in this piece because it’s here to give an idea of cadences across events. But what Johnson and Reynolds show is how there is no one specific cadence or stride length being used to get them to a world record – each adopted what worked for them.

In the next article, it’s time to look at the middle distance runnersclick here to go to it.

2 thoughts on “The Truth About Cadence Part 2

  1. I can’t quite comprehend 4-5 steps PER SECOND!!

    They look “normal” on TV footage, I guess thats down to brains comparing the runners to each other…similar to “the moon looks large near the horizon but small high in the sky because there’s nothing close to compare it to” phenomena.

    Liked by 1 person

    1. TV does a massive injustice to how remarkable elite athletes are in all sports are. I once saw some decent sprinters training at Battersea Park’s track and what really brought home how quick they move is that that their arms/legs were blurs!

      Like

Leave a reply to Hugh Cancel reply